
P1: FZN/LCR/FNV P2: FZN

International Journal of Theoretical Physics [ijtp] pp518-ijtp-375265 June 11, 2002 17:38 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 41, No. 6, June 2002 (C© 2002)

Tree-Level Violation of the Equivalence Principle
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Massive particles of spin 0 and 1 violate the equivalence principle (EP) at the tree level.
On the other hand, if these particles are massless, they agree with the EP, which leads
us to conjecture that from a semiclassical viewpoint massless particles, no matter what
their spin, obey the EP. General relativity predicts a deflection angle of 2.63′′ for a
nonrelativistic spinless massive boson passing close to the Sun, while for a massive
vectorial boson of spin 1 the corresponding deflection is 2.62′′.
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1. INTRODUCTION

Gravitation has a unique feature: the gravitational charge (or mass) of a
body equals its inertial mass. In other words, all bodies accelerate equally in
a gravitational field. It is therefore impossible to distinguish by observation of
falling bodies between the uniform acceleration of a noninertial frame and a uni-
form gravitational field in an inertial frame. The equality of gravitational and
inertial mass led Einstein to the unshakable conviction that any theory of grav-
itation must respect the equivalence principle (EP) which asserts that no physi-
cal experiment whatever can distinguish between the two possibilities mentioned
previously.

In consequence of the EP, light rays follow null geodesics and all light rays
are deflected in a gravitational potential by the same angle. Miraculously things
do not change at all when one goes a step further and analyzes the same issue
from a semiclassical viewpoint. If one computes, for instance, the cross-section at
the tree level for the scattering of photons by the Sun’s gravitational field, treated
as an external field, it is found from this result that for a photon just grazing the
Sun’s surface the deflection is 1.75′′, which is exactly the same as that given by
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Einstein’s theory (Acciolyet al., 1998, 1999; Boccalettiet al., 1967). Thus, one
may say that neither dispersive light propagation nor tree-level dispersive photon
propagation can be produced by a gravitational field which obeys Einstein’s field
equations.

On the other hand, in a series of papers on the photon propagation around
a massive body in quadratic theories of gravitation it was shown recently that,
unlike Einstein’s gravity, quadratic gravity produces dispersive photon propagation
(Accioly et al., 2000a,b, in press; Accioly and Blas, 2001). To be more specific,
quadratic gravity produces energy-dependent photon scattering. An interesting
consequence of this fact is that gravity’s rainbows and higher-derivative gravity can
coexist without conflict (Accioly and Blas, 2001). In this sense quadratic gravity is
closer to quantum electrodynamics than any currently known gravitational theory.
In fact, dispersive photon propagation is a trivial phenomenon in the context of
QED. Based on the fact that the rainbow effect which is present in quadratic gravity
is undetectable nowadays, it is possible to find a new constraint on the value of
the contribution of the quadratic part (Accioly and Blas, 2001). This is a very
important result given the scarcity of observational constraints on gravitational
theories. In addition, it was also found that the gravitational deflection predicted
by quadratic gravity is always smaller than that predicted by Einstein’s theory
(Accioly et al., 2000a,b, in press; Accioly and Blas, 2001). It is worth mentioning
that theR2 sector of the theory of gravitation with higher derivatives does not
contribute anything to the gravitational deflection (Acciolyet al., 1998, 1999).

The preceding considerations lead us to raise the interesting and important
question: Is it possible to produce energy-dependent scattering of massive parti-
cles, at the tree level, in the very context of general relativity? Our aim here is
precisely to show that the alluded energy-dependent scattering can be produced
within the framework of Einstein’s theory leading thus to a tree-level violation of
the EP.

The scattering of spinless massive particles by a static gravitational field,
treated as an external field, is analyzed in Section 2, while the scattering of massive
spin 1 particles is discussed in Section 3. Both of them produce energy-dependent
propagation. A summary of the main results is presented in Section 4.

We use natural units throughout. In our convention the signature is (+−−−).
The curvature tensor is defined byRαβγ δ = −∂δ0αβγ + · · · , the Ricci tensor by
Rµν = Rαµνα, and the curvature scalar byR= gµνRµν , wheregµν is the metric
tensor.

2. SCATTERING OF SPINLESS MASSIVE BOSONS
IN GENERAL RELATIVITY

We consider here the scattering of a spinless massive boson by a static gravi-
tational field generated by a localized source such as the Sun, treated as an external
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field. As is well known, in general relativity the gravitational field is defined by
the action

S=
∫ √−g

[
2R

κ2
− LM

]
d4x,

whereκ2 = 32πG, with G being Newton’s constant, is the Einstein’s constant and
LM is the Lagrangian density for the usual matter. In the weak-field approximation,
i.e., gµν = ηµν + κhµν , with ηµν = diag(+1,−1,−1,−1), and in the de Donder
gauge, the field equations related to the action in hand turn out to be

hγµν = −κ
2

Tµν ,

whereγµν ≡ hµν − 1
2ηµνh andTµν is the matter tensor which describes the phys-

ical system under consideration in special relativity, i.e., disregarding the gravita-
tional field. Indices are raised (lowered) usingηµν(ηµν). The general solution of
the equation above for a point particle of massM located atr = 0 is

hµν(r ) = Mκ

16πr
(ηµν − 2ηµ0ην0).

The Lagrangian density for the boson–external-gravitational-field inter-
action, in turn, is given by

Lint = −κ
2

hµν(r )

[
∂µφ∂νφ − 1

2
ηµν(∂αφ∂

αφ −m2φ2)

]
,

whereφ is a scalar field describing particles of massm and spin 0, from which we
obtain the corresponding vertex function

V(p, p′) = −κ
2

hµν(k)[ pµp′ν + pν p′µ + ηµν(m2− p · p′)],

where

hµν(k) ≡
∫

d3re−i k·r hµν(r ) = κM

4k2
ηµν − κM

2

ηµ0ην0

k2
(1)

is the momentum space gravitational field. Herep(p′) is the momentum of the
incoming (outgoing) boson and|p| = |p′|.

Consequently, the cross-section for the scattering of spinless massive bosons
by a static gravitational field can be written as

dσ

dÄ
= 4M2G2

(1− cosθ )2

[
1− m2

2E2

1− m2

E2

]2

,
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whereE is the energy of the incident boson andθ is the scattering angle. For small
angles, this expression reduces to

dσ

dÄ
= 16M2G2

θ2

[
1− m2

2E2

1− m2

E2

]2

. (2)

However, for small angles,

dσ

dÄ
=
∣∣∣∣ rθ dr

dθ

∣∣∣∣ . (3)

Eqs. (2) and (3) then yield

θ = 4MG

r

[
1+ m2

2E2

]
. (4)

Some comments are in order here:

(i) For a massless spin-0 particle passing close to the Sunθ = 1.75′′, which
is exactly the same result that is obtained with a massless spin-1 particle.
Therefore, we may conjecture that massless particles, no matter what
their spin, do not violate the EP at the tree level. Of course, from a
classical viewpoint all massless particles travel the same null geodesic
and, in addition, they are deflected in a gravitational potential by the
same angle.

(ii) From a semiclassical point of view massive spinless bosons do violate
the EP.

(iii) The scattering of spinless massive bosons in a static gravitational field
is dispersive. To be more specific, such a scattering is energy dependent.

(iv) Rewriting (4) as

θ = 4MG

r

[
1+ m2

2(m2+ p2)

]
,

and restricting our attention to the case that the motion of the spinless
massive boson is nonrelativistic, i.e.p2¿ m2, we come to the conclusion
that in this limit

θ = 3

2

(
4MG

r

)
.

Thus, general relativity predicts a deflection angle of 2.63′′ for a nonrel-
ativistic massive particle of spin 0 passing at the Sun’s limb.

(v) For a massive scalar boson of spin 0 just grazing the Sun’s surface
θ > 1.75′′.
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3. SCATTERING OF MASSIVE VECTORIAL BOSONS
OF SPIN 1 IN GENERAL RELATIVITY

We turn our attention now to the scattering of massive spin-1 particles. The
usual procedure in quantum gravity for obtaining the vertex function in the absence
of fermions is to start with the action functional describing the matter field and to
write the metric tensorgµν(x) as

gµν(x) = ηµν + κhµν(x). (5)

Consequently, the Feynman rule for the interaction of a massive spin-1 particle
with a static gravitational field, treated as an external field, is obtained from the
action for a gravitational minimally coupled massive spin-1 field

S=
∫

d4x
√−g

[
− FµνFµν

4
+ m2AµAµ

2

]
,

whereAν is a vector field describing particles of massm and spin 1 andFµν ≡
∂νAµ − ∂µAν , expanding around flat space using (5). This leads to

Sint =
∫

d4x

[
−κ

8
(−4hµαηνβ + hηµαηνβ)FαβFµν

+ m2κ

4
(−2hµα + hηµα)AαAµ

]
.

Accordingly, the vertex function for the vector-boson-field–static-external-
gravitational-field interaction takes the form

Vµν(p, p′) = κ

2
hλρ(k)[−ηµνηλρ p · p′ + ηλρ pν p′µ + 2(ηµν pλp′ρ − ηνρ pλp′µ

− ηµλpν p′ρ + ηµληνρ p · p′)+m2(−2ηµληνρ + ηµνηλρ)],

wherep(p′) denotes the momentum of the incoming (outgoing) vectorial boson
andhλρ(k) is given by (1).

The unpolarized cross-section for this process is

dσ

dÄ
= 1

(4π )2

1

3

3∑
r=1

3∑
r ′=1

M2
rr ′ ,

withMrr ′ = εµr (p)ενr ′ (p
′)Vµν , whereεµr (p) andεµr ′ (p

′) are the polarization vectors
for the initial and final vectorial bosons, respectively. Noting that (Greiner and
Reinhardt, 1993; Mandl and Shaw, 1994)

3∑
r=1

εµr (k)ενr (k) = −ηµν + κ
µκν

m2
,
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we promptly obtain∑
r

∑
r ′
M2

rr ′ = VµνVαβ

[
ηµαηνβ − η

µα p′ν p′β + ηνβ pµpα

m2
+ pµpα p′ν p′β

m4

]
.

Using much algebra we arrive at the following expression for the cross-section
in hand

dσ

dÄ
= 4

3

(
GM

k2

)2

[2(p · p′)2− 8E2 p · p′ + 12E4

+ 5m4− 4m2E2− 4m2 p · p′],
which, for small angles, reduces to

dσ

dÄ
= 8

3

(
GM

1− m2

E2

)2
1

θ4

[
6

(
1− m2

E2

)
+ 2θ2

(
−1+ m2

E2

)
+ 3

2

(m

E

)4
]
.

Now, taking into account that for small anglesdσ
dÄ = | rθ dr

dθ |, we come to the con-
clusion that

r = 4GM

[(
1+ 1

2

m2

E2

)(
1

θ
+ θ ln θ

3

)]
. (6)

Therefore, the scattering of vectorial bosons of spin 1 in the context of semiclassical
general relativity is energy-dependent and thus violate the EP.

In the nonrelativistic limit (6) can be rewritten as

θ = 3

2

(
4GM

r

)(
1+ θ

2 ln θ

3

)
.

Hence, the gravitational deflection predicted by general relativity for a nonrela-
tivistic massive vectorial boson of spin 1 passing close to the Sun is 2.62′′.

4. FINAL REMARKS

We have shown that massive particles of spin 0 and 1, unlike their massless
counterparts, violate the EP at the tree level. In this vein we believe that if we
perform a computation similar to that presented in Sections 2 and 3 for massive
particles of spin 1/2, 2, etc., we shall come to the conclusion that they too violate
the EP at the tree level. Therefore, the following statement is quite plausible:

Massive particles, no matter what their spin, violate the EP at the tree level,
whereas their massless counterparts do not.

Last but not least we remark that in the metric formalism concerning general
relativity, particles follow geodesics lines, while in a field-theoretical treatment, it
is the particle–graviton interaction that replaces this geometrical fact.
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